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2018 PAW WELL FAILURE STATISTICS




Primrose Pad Area Groupings
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Well Failure Definitions

= Near-surface failure: 0m—-25m TVD

= Qut of zone failure: failure depth is between 25 m TVD to the interface
of Grand Rapid/Clearwater formation

= In zone failure: occurs within the Clearwater formation (includes failures
within the capping shale)

= Primary failure: primary pressure-containing string in the wellbore
(typically 9-5/8" intermediate casing)
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2018 Failure Statistics Summary

1 failure identified in WL

Out of Zone In Zone
Primary Casing Failures 48 3
Area Concentrated in PRN A2, PRE A2 and PRS PRN A3

Connection/Pipe Body

100% at Connection

100% at Connection

Cycle

25% CSS Cycle 6+
75% on LP Steaming

100% CSS Cycle 6+

Formation

100% in Colorado Shale
No near-surface failures (0-25m)

Clearwater

Pressure During Failure

84% at pressure < 4.0MPa
16% at pressure > 4.0MPa

100% at pressure > 4.0MPa

Status at time of Failure

57% associated w/ well shut-in
25% on production
18% on injection

100% on injection
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CNRL’s Well Integrity Philosophy

1. Reduce casing failures through proper well design, construction
and operational practices

2. Continues to obtain a further understanding of well failure
mechanisms and reduce the frequency of future failures

3. Effectively apply monitoring resources to minimize risks to HSE,
assets, and reputation
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Well Failure Count by Year

Well Failure Count by Year
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Out-of-zone failures 1 since 2015 due to cumulative damage as wells age




Annual Well Failure Rates

Well Count and Failure Rate by Year
Primrose and Wolf Lake
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Cumulative damage is not “reversible”




2018 Primary Casing Failure Count by Month
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Est. Pressure at Failure Depth
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Failures During Steam Injection

= 8 failures occurred while injecting in 2018

o 6 wells were in the Belle Fourche (3 on HPCSS, 3 on steamflood)

Expect casing, when under steam, to be in compression
o Steam rate adjustments expected to cause only small changes to stress levels

o Thermal effects on overburden may impose additional heave and bending
stress on the casing (formation flexing)

o Localized formation flex within a weak bedding plane

To date, caliper data does not show significant deformation at connections

No integrated geo-mechanical and casing deformation model

Failures likely due to cumulative damage / stress cycling over well life, including
factors such as caustic cracking
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Out of Zone Failures by Formation

Failures Out of Zone - Cumulative Number of Failures since 2004 , and 2018 Data
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98% of out-of-zone failures in 2018 were in the Colorado Shale Group
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Operating Stage at Time of Failure

PAW 2018

Majority of failures occurred
when wells were cooling:

- changes in casing stress
(compression to tension)

- cumulative effect of other
ageing effects (caustic,
thermal cycling, etc.)

Canadian Natural
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Days to

Failure after Shut-in

Count

m S| after Producing m Sl after Injecting
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86% of the shut-in wells failed within 7 days of being shut-in
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Failures by Cycle: Normal CSS - Out of Zone

Number of Failures
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Older wells have higher likelihood of failure
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2018 Remediation Method of Failed Casing

Well Failure Repair Method
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Slimholed wells have full pressure rating under steam
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2018 PAW Casing Failures Table

wrell Area Sub Area |License ¥ | Failure OF D:I.;ﬁ:;‘;n DEEE;iznn [D:EE:; [2$%t|5‘] Formation
1875 FRE FRE &1 S51305 CSi= | = d—Jdan-15 ZEE.00 254 .50 Belle Fourche
ThAAaS FPRE FRE &2 455414 C5= = 1d-Jdan-18 Z58.50 2Z57.50 Eell= Fourche
EBZS PRS RS Od4z=2932 C5= = 189-Jarn-18 Z7E. 10 274 50 Eell= Fourche
1823 PRS RS 424426 C5= = Z6-Jan—18 Z0.90 2558 50 Eell= Fourche
11ATT FPRE FRE &4 375161 C5= = S5-F=b-1&8 S11.30 03 30 eskgate
dATE FPRE FRE &4 351308 C5= = 1d-F=b-—15 ZE5.90 25 30 Fish Scales
ZhA2d PRS RS d4z24510 C5= = 18-F=b-15 13,30 07 30 eskgate
T1AZE PRS RS Od4z2534 C5= = 27-Feb-18 Z50.00 278 50 Eell= Fourche
17AZE PRS RS Od4z2540 C5= = Z25-Feb-18 Z5d4.20 273 40 Eell= Fourche
TAZS PRS RS 424432 C5= = 1-Mar—15 Z5d. 40 ZEZ. O Eell= Fourche
13466 RN FPREM A2 IA5305 C5= = F-Mar—15 Z5Z2.20 251.50 Eell= Fourche
1EAEG RN FPREM A2 335310 C5= = F-Mar—15 =15 30 S13.80 ilsimg
ThAZA PRS RS 424561 C5= = S5—Mar—15 Z54.70 254 .30 Eell= Fourche
dA25 PRS RS 442310 C5= = E-Mar—15 27170 Z53. 40 Eell= Fourche
10EZ25 PRS RS 04423936 C5= = T-Mar—15 Z70.sa 253 .70 Eell= Fourche
104833 FRE FRE &2 432535 C5= | = S-Mar—15 Zdd. 50 244 70 Eelle Fourche
ZBZ25 RS RS Od4=928 C5= | = 1E-—Mar—18 Z73.d0 Z5E3.10 Eelle Fourche
1EAET FPREM FEM &2 4036567 C5= | = 1E-—Mar—18 Z55.10 253 50 Eelle Fourche
13A53 FPREM FEM &2 401754 C5= | = 10-Mar—18 Z50.45 274 71 estgate
144857 FPREM FEM &2 4036565 C5= | = 1E-—Mar—18 134 70 134. 50 Micbrara
S4a393 FRE FRE &2 432536 C5= | = 15-Mar—18 Zd58.70a 245 50 Eelle Fourche
154822 RS RS 424785 C5= | = 15-Mar—18 133 . 650 133.50 First "hite Specks
1148393 FRE FRE &2 432583 C5= | = S1-Mar—18 ZdE. 50 ZdE. 30 Eelle Fourche
18Aa53 FPREM FEM &2 401753 C5= | = 18-Apr—15 1780 S10.20 estgate
17435 FRE FRE &2 43535424 C5= | = 189-Apr—15 ZE0. 50 25310 Eelle Fourche
15435 FRE FRE &2 435422 C5= | = 2d-apr—15 Z558.40 257.30 Eelle Fourche
13435 FRE FRE &2 435426 C5= | = 2d-apr—15 Z59.0= 256 935 Eelle Fourche
1348235 RS RS 424435 C5= | = 25-apr—15 Z53.580 253 20 Eelle Fourche
3435 FRE FRE &2 43535415 C5= | = 27 -apr—15 Z53. 50 25340 Eelle Fourche
10453 RN FEM A2 401323 C5= | = E—Mau—15 S01.40 235 50 estgate
13487 FRE FRE &1 SI50545 C5= | = - au-—18 ZEZ. 50 Z51.20 Eelle= Fourche
144832 FRE FRE &2 432315 C5= | = 1d—Plau—15 27100 ZE3. 50 Eelle= Fourche
1EAES RN FPEM AS 4d 5572 C5= | = 25-—Mau-15 ZEE. 45 ZE5. 00 Eelle= Fourche
154825 RS RS Odg4z2321 C5= | = S0-Ma=wu-15 =7=2.94 253 .50 Eelle= Fourche
= Foped = RS RS Odd4=532 C5= | = S—durn—15 = =1u] 275 30 Eelle= Fourche
124832 FRE FRE &2 435323914 C5= | = T-duurn—15 e == =1 ZE7. 50 Eelle= Fourche
13475 FRE FRE &1 3813138 C5= | = 17 —duan—18 215 60 215. 60 First "hite Specks
Z0a53 RN FEM A2 401755 C5= | = 20-Jun—15 F=22.30 12,20 estgate
14BE25 RS RS Odd4=940 C5= | = 1-dul-13 ZTE. 74 27=. 00 Eelle= Fourche
12625 RS RS Od4=935 C5= | = 1-dul-13 Z7E.O0 274 .10 Eelle= Fourche
1BS= RN PREMN A1 13033 C5= | = S—dul-15 =d3.30 SZ2E. 30 Jdali Fou
12430 FRE FRE &2 4530454 C5= | = 1=—Jdul-15 Z52.20 25220 Eelle= Fourche
13451 RN FPEM AS 4455235 C5= | = S0-Jul-15 207 .80 207 .50 Eelle= Fourche
SAET RN FEM A2 403560 C5= | = 1-faug-—15 ZE0.10 253 30 Fizsh Scales
SAUS =L Saso L Saso 251255 C5= MFEFC S0-Luug-15 =358.93 237.54 Eelle= Fourche
12865 FPREMN FPREMN AS G Sadd0 C5= | = 13-Se=p-—1& 555 50 454 00 Clearw ater
T=31 RS RS S01753 C5= | = 25-Sep-15 F30.6=2 SZ5. 00 iking
SnGd FPREMN FPREMN AS G4 5530 C5= | = 16—z —18 S553. 653 455 51 Clearw ater
1EATT FRE FRE &1 ITS1EE C5= | = 25-0ct—18 Z53. 37 27T1.55 Eelle= Fourche
1= FPREMN FREMN &2 403665 C5= | = S0-—Mou-—13 Z5d4. 50 Z55. 00 Fish Scales
134855 RN FREMN AS G Seld C5= | = T-DOe=ec=—15 553.390 G452 00 Clearw ater
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Well Integrity Initiatives

= Addition of CCL to caliper tool string
= External casing corrosion monitoring

= Well integrity protocol document updates
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Caliper Log Data Presentation

Dataset Creation  Mon Jun 04 09:18:19 2018
Charted by Depth in Meters scaled 1:240

Sross Sectior-15 LSPD (m/min)  15/45 RO1 (mm) 405/200 IDMX (mm) 240
0 WTEMP (degC) 150/-5 R11 (mm) 356|200 IDMN (mm) 240
PGC_cCL 55 R21 (mm) 305|200 IDAV (mm) 240
26+006 150001-105 R31 (mm) 255|200 CASEOD (mm) 250
0 PGC_GR (GAPI)120|-155 R41 (mm) 205200 ~ CASED(mm) 250
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» Added CCL trace to log (sensitive to change in magnetic flux applied to casing)
* Provides secondary indication of potential break
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External Casing Corrosion Monitoring - PAW

= 50 wells randomly inspected in 2018 on a scoping basis (identify if a problem exists)

= Inspections did not cover all pads — sampled between different ages of operating pads (3 to
30 years old)

= One pad had most of its wells checked as a pre-steam check (Pad 31: 17 of 24)
= Inspections consisted of visual checks, and where appropriate laser and UT measurements

= All inspections were done on primary pressure barrier — intermediate or production casing

Findings:
= In general, wall loss tracked age of wells (most on oldest wells)

= Observed wall losses were variable over each pad

= 30% (15 wells) checked required only visual inspections - no other action required.

= Wells w/ full measurements (35 wells):
o 68% had low levels of corrosion (no operating risk; most protectively coated)

o 20% (in West Ladder ph. 8-11) may require repairs if wells are to be returned to steam injection (depends on
maximum steaming pressure). Good for producer only

o 12% required repair (corroded casing already replaced due to upcoming steaming cycle)
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External Casing Corrosion Monitoring — PAW

Canadian Natural
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Casing Integrity Protocol Updates

= Commenced work on an update to the internal Thermal Well Casing Integrity
Protocol document to:

= clarify type of steaming operation and the appropriate preventative casing inspection
checks,

= revise the minimum allowable casing wall thickness as function of steaming type /
pressure,

= clarify various requirements related to pressure testing, logging procedures, etc.

= Commenced work on an update to internal Thermal Well External Casing
Corrosion Management Protocol document to:

= clarify primary vs. secondary barrier philosophy,
= clarify requirements related to pressure testing, and
= updated initial inspection requirements on wells.
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